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1. Introduction

A set of observations under a design is said to be influential in
this paper if the set affects not only the fitLing of the model to the
data but also the prediction in terms of the fitted model. 1In the
problem of identifying sets of t (a positive integer) influential
observations, we assume the underlying design is robust against the
unavallability of any t observations [Chosh (1979)]. We first explain

this concept by considering the standard linear model

ECy) = XB , (1)
V(y) = o’1 , (2)
Rank X = p , (3)

where y(Nx1) is a vector of observations, X(Nxp) is a known matrix,
B(px1) is a vector of fixed unknown parameters and o? is a constant which
may or may not be known. Let d be the underlying design corresponding to

y. The design d is assumed to be robust against the unavailability of

any t observations in the sense that the parameters in B are still un-—

biasedly estimable when any t observations in y are unavallable. There (

are (E) possible sets of t observations. The idea of robustness of
designs against unavailability of data is fundamental in measuring the
influence of a set of observations.

Ve first measure the influence of a set of t observations by
assuming the observations in the set unavailable and then calculating the
sum of variances of their predicted values from the remaining (N-t)

observations. The largest value of the sum indicates the corresponding

set of t observations is the most influential in terms of precise
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prediction of unavailable observations. We also measure the influence of
-

1}

a set of t observations by assuming them unavailable and then calculatipg
ﬁE the sum of squares of the elements of the covariance matrix between the
"..

least squares fitted values of the remaining (N-t) observations and a
k. "

; complete set cf orthonormal linear functions of y with zero expecta-

kA
N
gt tions. The largest value of the sum of squares indicates the correspond-

‘ ing set of t observations is the most influential,

o

AN The impoitance of knowing the influential set of observations at the
\\

05 design stage is that (1) we can assess the influence of a set of unavail-
5 able observations in the planned analysis, (2) in the case of deficit of
i budget during a long term experiment using the robust design where it may
> .

;: be a good idea not to collect observations which are least influential.

; 2. First Method
i ———— e = A o e =

o~ We denote the ith set of t observations in y by Xéi); and the re-

)

N .

i":', maining observations in y by 1(11); the corresponding submstrices of X by

x&i) and X&i); the resulting design when t observations in the ith set
'l
, (i) ., _ N
[~ are unavailable by d , i—l,...(t). The least squares estimators of B
!# - -
v -1 - "y (1)1, ()T (4
" under d and d( ) are B = (X'X) X'y and gd(i) = (Xgi) Xl( )) Xg ) XE ).
‘}T We write the fitted values of y under d and d(i) as y,= Ed and Xd(l)

R
N ng(i)' When t observations in the ith set are unavailable, the

2 - (1)

predicted values of unavailable observations Yy from available observa-
.: tions are the elements in ;(i) = X (1) ; The reliability of these
. . “2 2 a)” y
D" : 1] __'1 '

): estimators can be judged by V(ygi)] zxgl)(xgi) xﬁi)) Xgi) . The

e

first measure of influence of ygi) is defined as
by’

‘2.
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i “(4
Il(zg )) = Trace V(zg )) . (4)
The smallest value of Il(xgi)), i=l,:..,(§), for 1i=u, indicates that the
uth set of t observations is the least influential in terms of precise

prediction of unavailable observations. On the other hand the largest

R value of Il(xsi)), i=1,...,(§], for i=w, indicates the wth set of t
observations is the most influential,
We denote B(i) = It + Xgi)(xii)'X§i))—lX§i)'. It can be checked
{ that
-1 _ — x)yigy~l 4 (1)7
Bigy = I, - X (x0T xt (5) l

. ~ _ - = ' "'l (i)' (i) (i)

: Bacry T Ba T 0T B (%58, ), (6)

I (1) (1) ()5 _ ' | 257

r e, 08y - 3y ) (%08, - ") - STy (7

We denote the ith observations in y by Yy and the ith row in X by'ii,

i=l,...,N.
Theorem 1 For any design.
n(®) > ] Dy .
1e{11,...,1 } o1 - x| (x'X)
where th (1)
e the 11,...,1t rows of X are rows of XZ .

Proof. It follows from B(i) and BZi) given in (5) that for

“ 1=1,.00,1,,
! - (1)' (1)y-1
p 1 + x! (X X ) X, D —— === - s
Hth oA X 1-x'(X'X)—13({
) . 1.e.,
v
! ' -1 '(X'X)
SO Oy > HER
—x'(X'X)

The rest is easy.

-~ e

|
4 !
\
A e (‘~’_-'_I‘-.-I'-v 4

f'(r.v‘r({f~‘~.r ‘A/.r-,f-(, R TP LA PR N A N -
R o 2 y Hr {' P IR N A I P M N PN M A NN ‘f‘f\r\u“f NN “r”f\:'f'-“ S

\'.



I

c'.., .'{“30 o.

4=

Theorem 2 1f for a design, the individual observations are equally
influential then
= PO __
RN CEV
Proof. When the individual observations are equally influential, Il(yi)
(1) _

is a constant independent of 1 for t=1 and thus X2 =X

x! (X(i)'x(i))"

and

x, Is a constant independent of 1. This in turn implies

4 1 1 4
from (5) that for t=1, Ei(X'X)_IXi is a constant indcpendent of {.
We know trace X (X'X)—IX' = p and thus xi(x'x)—ygi =-§ . From (5), we
(L)' 1)y~ P
M = ———
get_zi(xl X1 ) %, N=p) and hence the result.

Theorem 3 1If for a design, the individual observations are equally

influential, then

2
(1) po’t
I > 2t . 10
I(XZ ) 7 (N"‘p) ( )
Proof. For t=1 and equally influential individual observations,
zi(x'x)_lzi = % and hence the result in (10) follows from (8).

From (9) and (10), we observe that for a design with equally influential
i (1)
individual observations 11(12 ) 2t Il(yi)'
3. Second Method
Let Z((N—p)xN) be a matrix such that Rank Z = (N-p), ZX = 0 and
2Z2' = 1. 1t can be scen that COV(Xd’ZZ) = 0., This 1implies that Y4 has

the minimum variance within the class of all unbiased estimators of

E(Zd].under (1-3). When t observations in the ith set are unavailable,

the least squares fitted values are y(i) = Xii) (1) We denote the
submatrices of Z corresponding to Xii) and Xgi) by Zii) and Zél). It

follcws that Cov (isi),Zy = o? Si) ii)' (i)] Si)'zﬁi)']. The

ﬁ?’(hh e T -*ﬂ‘w“rs. ':f‘}"'“"ﬁ"“ R MY ‘*“r‘* > c Ay u“-‘¢‘~ oy
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by

further Cov(lgi),z‘y_) is away from the null matrix, the more influential
. 1.

is the set of t observations 151). We thus have the second measure of ;
. *

!

influence as £
Iz(xgi)) = O—Z[Sum of squares of elements in Cov(xii),ZX)] . (11) o

We now show some similarities between our two measures of influence ;‘

(1)

1,(y$1) and 1,(y510). -

Theorem 4 The following is true for i=l,...,(§),

oy gt

v(z, Py{) = v 2§VyD) . 2
preof. We observe that z{10x{P) + 2§17x§1) = 0 and hence v(z{Py{P?) = :
o2 {x{D (D x ) Ix{ D A" o F2{Dx{D e k() Tt 2 f D" -
v(z$Py$8)), 5}
Theorem 5 The following in true.

15(y5%)) = Trace v(z5Vy50)). (13)
Proof. It can be seen that "
12(y2") = o Trace x{V)(x{H) x{1) k(D 2{1) 2Dk (1 k(D) e ]

= o? Trace z{1)x{D) (x{1)"x{1) ) 1x{V'2{V)’

= Trace v(z{Dy{1) ,

= Trace v(z$y$1)) 5
Corollary We have :
' (80) - Trace [V(3§1)] (251 251 (14) r

The equation (13) displays the similarity between two measures of q
tnfluence 1,(y51?) and 1,(y$%?). Although the matrix z is not unique, it :

(1)

can be checked that 12(12 ) is unique for all choices of the matrix Z.
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4, Relationship

Q Cook (1977) proposed a distance function between yd and Xd(i)’

popular as Cook's distance, at the inference stage as

§ Ty (15)
Y PS4

=)

kd

2 - -
where (N—p)sd = [z - Xd)'(z_— Xd)' The Cook's distance D, measures the
degrce of influence of t observations in the ith set on the estimation of
(1)

B. We now show that our first measure of influence 11[22 ) is in fact

related to Di.

Theorem 6 From (4) and (15), we have
2 - (1)
elpaln,) = 1, (s50). 16)

Proof. We get from (6)
- "Nl Oy Lo )y )y, (12 L (1); 1)
(Xd(i)_yd) ()’d(i) .Yﬂ) = (xz E .Y_z ) (B(i) B(i))(xz 'Bd )’_2 )'
It now follows from (7), (15) and (17) that

02 Trace (

]

2
E(deDi) B(i)djt)
02 Trace Xgi)(Xii)'Xsi))—IXSi)'

Il(lgi) ).

This completes the proof.
5. Examples

Consider a 2" factorial experiment in a completely randomised set up
and su;pose the elements in B are the general mean, the main effects and
the 2-factor interactions. The 3-factor and higher order interactions

are assumed to be zero. Thus p=11. The treatments are denoted by (x) x,

X3 Xy), xi?0,1,1=1,2,3,4. For brevity, we indicate a trecatment by the

R RN S R SR PRI N i SV Iy s P P A SR A AN A
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positions where the level 1 is occuring. For example, the treatment

(1100) is denoted by 12.

The treatment (0000) is denoted by 6.

Design T
Consider a design with 15 treatments and we write the treatments in
"
> the order (6,1,2,3,4,12,13,14,23,24,34,123,124,134,234). Note that the
<
; elements in y, the rows of X and the columns of Z correspond to this
o™
- ordering. The matrix Z is given below
4
\ -
z' ba ~3a -3a -3a -3a 2a 2a 2a 2a 2a 2a -a ~-a -a -a
4
o o 1 -1 1 -1 0 -2 0 0 2 0 1 -1 1 -1
- 72=(.25) ,
" 0 1 -1 -1 1 0 0 -2 2 0 o0 -1 1 1 -1
o
N 0 1 1 -1 -1 -2 0 0 0 0 2 1 1 -1 -1
- - .
"
g where a = (1//5). The design is robust against the unavailability of any
two observations [Chosh (1979)].
'
"y
»
k{ Table 1
_' Influences of Individual Observations Under Design 1
.5 D N
'3 Observations o I, g1,
ot e e i A
Y1 4.000 .800
-h" b—————— =~ =~ = = - - e T T
L2 yi,i=2,...,11 2.333 .700
2 S S S
"3 yg»i=12,...,15 | 4.000 .800
‘\
5
Wl
0
’
I
l
4
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Table I1

Influences of Pairs of Observations Under Design 1

Observations

(y5¥42,1=2,.4,155(y,,¥,5);
(935514055 55Y )3 (¥g»y  )1=2,135
(y7,yi)i=12,14;(y8,yi)i=13,14;
(y9,¥,)1=12,15;(y 45y, )i=13,15;

(yll,yi)i=14,15.

(yl,yi)i=6,...,11;(y2,yi)i=12,l3,14;
(y3,yi)i=12,13,15;(y4,yi)i=12,14,15;
(ys,yi)i=l3,14,15;(y6,yi)i=14,15;
(y7,yi)i=13,15;(y8,yi)i=12,15;
(ygs¥;)i=13,145(y 55y 405

(yl.yi)1=12,--n15;
(y;5,¥4)1=13,14,15;
(y,3,¥4)1=14,15;

(¥14°Y15)

...............

2 8'2 €% %2 4%a"! el tal ol Vol 0.0 000 Yok ba) bo8-8
4 - R TR
o %1, o %1,
............. e e ]
11.333 1.500
8.000 1.500
8.667 1.600
N e
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Table II (Continued)

Influences of Pairs of Observations Under Design I

Observations
(y,,y,)i=3,4,5,9,10,11;
(y4,y41=4,5,7,8,11;
(Ya,yi)l=5,6,3»10;
(ys)yi)1:6’7)9;

(ybxyi)i=7:8)9)lo;

(y,,y;)1%8,9,115(yg,y,)i=10,11;

(yg,yi)i=10,11;(y10,y11)-

(y,»y;)i=6,7,8;(y4,y,)i=6,9,10; 10.000
(ya,yi)i=7,9,11;
(ys,yi)i=8,10,11;
(ye,yll),(y7,y10);

(yg»y )a(y 'Y q9)
8’79 10’712

We find that under Design I, any of yi,i=2,...,11 is the least
influential w.r.t. both Ij and I,. Any pair of observations with 0_211
equals 11.333 is the most influential w.r.t. I]. On the other hand, any
pair of observations with 0—212 equals 1.600 is the most influential
w.r.t, I;. The variability in values of I, is so small that it is very

hard to assess the influence w.r.t. I, under this design.

e i T e e S P S e T S P =,
EACAENT A N . QA g
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Design 11

We consider a complete 2% factortal experiment with treatments
written in the order (1234, 8, 1,2,3,4,12,13,15,23,24,34,123,124,134, 3
234). The matrix Z is as follow

1 1 -1 -1 -1 -1 1 1 I 1 1 1 -1 -1 -1 -1
2=(.25) 6 o0 1 -1 -1 1 0 0o -2 2 0 0 -1 1 I -1,

2 -2 1 1 1 1 0 0 0 0 6o o -1 -1 -1 -1

This desfgn §s robust against the unavailability of any three observa-
tions [Chosh (1979)]. It can be checked that Il<yi) = 2.202 and Iz(yi) =
(.6875)02 for i=1,...,16. Thus the individual observations are cqually

influential w.r.t. both I, and I,. For any pair of observations

T f o ¢ X _a_a

corresponding to treatments with zero or three levels in common, the
value of 0—211 is 8.000. For every other pair of observations, the
value of 0—211 is 4.667. We therefore sce the validity of the cquation i
(10) in Theorem 3 for this example since 2 Il(yi) = b.&oz. The value of ;

0‘212 for any pair of observations is a constant 1.375. The remark on

I, for Design 1 also holds for Design II.
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